Cambridge IGCSE[®]

MATHEMATICS Paper 4 (Extended) MARK SCHEME Maximum Mark: 130

> 0580/04 For examination from 2020

Specimen

© UCLES 2017

This document has 12 pages. Blank pages are indicated.

[Turn over

 $^{\odot}$

UCLES

Page

2 of 12

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

© UCLES 2017

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- **B** Mark for a correct result or statement independent of Method marks.

Page 3 of 12

When a part of a question has two or more 'method' steps, the \mathbf{M} marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several \mathbf{B} marks allocated. The notation 'dep is used to indicate that a particular \mathbf{M} or \mathbf{B} mark is dependent on an earlier mark in the scheme.

Abbreviations

- cao correct answer only
- dep dependent
- **FT** follow through after error
- isw ignore subsequent working
- nfww not from wrong working
- oe or equivalent
- SC Special Case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	48	2	M1 for $\frac{72}{3}$
1(a)(ii)	32.4[0]	1	
1(a)(iii)	$\frac{13}{30}$	2	M1 for $\frac{72 - their (ii) - 8.4}{72}$ oe
1(a)(iv)	24	3	M2 for $\frac{19.2}{0.8}$ oe or M1 for recognising 19.2 is 80%
1(b)	660	3	M2 for $\frac{550 \times 2 \times 10}{100} + 550$ oe or M1 for $\frac{550 \times 2 \times 10}{100}$ oe
1(c)	663.9[0]	2	M1 for 550×1.019^{10} oe
1(d)	1.5[0]	3	M2 for $\sqrt[10]{\frac{638.3[0]}{550}}$ oe or M1 for $550 \times m^{10} = 638.3[0]$

© UCLES 2017

Page 4 of 12

Cambridge IGCSE – Mark Scheme SPECIMEN

©UC	Question	Answer	Marks	Partial Marks
UCLES 2017	2(a)(i)	400	1	
2017	2(a)(ii)	70	2	M1 for upper quartile = 420 or lower quartile = 350
	2(a)(iii)	405 to 410	1	
	2(a)(iv)	170	2	B1 for 30 seen
	2(b)(i)	Mid-values 40, 80, 125, 200 soi	M1	
		Σfx with correct frequencies and x's in correct intervals or on boundaries of correct intervals	M1	
		÷ 200	M1	Dep on second M1
		106 nfww	A1	SC2 for correct answer without working
Page 5 of 12	2(b)(ii)	Correct histogram	4	 B1 for correct widths and B1 for each rectangle of correct height at 0.8, 1.6, 1.6 (up to B3) After 0 scored, SC1 for 3 correct frequency densities seen
	2(b)(iii)	$\frac{3840}{10712}$ oe isw $\left[\frac{480}{1339}\right]$	3	M2 for $[2\times] \left(\frac{24}{104} \times \frac{80}{103}\right)$ oe or M1 for $\frac{24}{104}, \frac{80}{103}$ seen

https://xtremepape.rs/

Cambridge IGCSE – Mark Scheme SPECIMEN

© UC	Question	Answer	Marks	Partial Marks
UCLES 2017	3(a)	9 10.5	2	B1 for each
1017	3(b)	Fully correct curve	5	 SC4 for correct curve, but branches joined B3 FT for 9 or 10 points plotted or B2 FT for 7 or 8 points plotted or B1 FT for 5 or 6 points plotted and B1 for two separate branches not touching or cutting <i>y</i>-axis
	3(c)	2.1 to 2.6 8.5 to 9	2	B1 for each
-	3(d)	2, 3, 5, 7	2	SC1 for correct 4 values and no more than one extra positive integer or $\pm 2, \pm 3, \pm 5, \pm 7$ or 3 correct values and no extras
Page	3(e)	(-2, -12)	1	
Page 6 of 12	3(f)(i)	$20 + x^2 = x^3$	M1	for multiplication by <i>x</i>
2		$x^3 - x^2 - 20 = 0$	A1	for no errors or omissions
	3(f)(ii)	Fully correct curve $y = x^2$	2	SC1 for U-shaped parabola, vertex at origin
	3(f)(iii)	3.1 to 3.6	1	
	3(f)(iv)	3.[0] to 3.1 or FT <i>their</i> answer to (f)(iii)	1	FT dep on (f)(iii) > 0

Question	Answer	Marks	Partial Marks
4(a)(i)	Correct image $(2, -5) (4, -5)$ (4, -2)	2	SC1 for reflection in $y = 0$ or 3 correct points not joined
4(a)(ii)	Correct image (-3, 1) (-6, 1) (-6, -1)	2	SC1 for rotation 90° clockwise any centre or 3 correct points not joined
4(b)	Translation by $\begin{pmatrix} 1\\ 9 \end{pmatrix}$	2	B1 for each

0580/04

© UC	Question	Answer	Marks	Partial Marks
© UCLES 2017	5(a)(i)	$[y=] \frac{1}{2}(80-2x)$ oe	M1	for $40 - x$ is enough
		$A = their \frac{1}{2}(80 - 2x) \times x \text{oe}$	M1	for $\frac{1}{2}(80 - x)$ or $40 - 2x$ for <i>their</i> $\frac{1}{2}(80 - 2x)$
		$A = 40x - x^2$ and $x^2 - 40x + A = 0$	A1	for no errors or omissions
	5(a)(ii)	(x-30)(x-10)	B2	B1 for $x(x - 30) - 10(x - 30) = 0$ or $x(x - 10) - 30(x - 10) = 0$ or SC1 for $(x + a)(x + b)$ where $ab = 300$ or a + b = -40
		30, 10	B1	
	5(a)(iii)	$\sqrt{(-40)^2 - 4(1)(200)}$ or better	B1	Or for $(x-20)^2$
Page 7 of 12		p = -40 and $r = 2(1)$	B1	Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both or for $20 \pm \sqrt{200}$
7 of 12		5.86 34.14	B2	If B0, SC1 for 5.9 or 5.857 to 5.858 and 34.1 or 34.14 or 5.86 and 34.14 seen in working or -5.86 and -34.14 as final answers
·	5(b)(i)	$\frac{200}{x} - \frac{200}{x+10}$	M2	Or M1 for $\frac{200}{x}$ or $\frac{200}{x+10}$ soi
		$\frac{200(x+10) - 200x}{x(x+10)} = \frac{2000}{x(x+10)}$	A1	No errors or omissions
	5(b)(ii)	16 (min) 40 (s)	3	B2 for 0.27 or 0.278 or 0.2777 to 0.2778 or $\frac{5}{18}$ [h] oe or 16.6 or 16.7 or 16.66 to 16.67 or $\frac{50}{3}$ [min] or M1 for 2000 ÷ 80(80 + 10) or $\frac{200}{80} - \frac{200}{90}$

Cambridge IGCSE – Mark Scheme SPECIMEN

> For examination from 2020

- R -	
ö	
//x	Ô
t	© UCLES 20
B	CL
9	ES
Q	20
6	17
3	

	Question	Answer	Marks	Partial Marks
1 EC 20	6(a)(i)	$\frac{1}{2}\mathbf{p}$	1	
17	6(a)(ii)	$\frac{1}{2}\mathbf{p} - \frac{1}{3}\mathbf{r}$	1	
	6(a)(iii)	$\mathbf{p} + \frac{2}{3}\mathbf{r}$	1	
-	6(b)	$\mathbf{r} + \frac{3}{2}\mathbf{p}$	2	M1 for correct unsimplified answer or for correct route or for recognising \overrightarrow{OU} as position vector
	6(c)	6 nfww	3	B2 for $(2k)^2 + ([-]k)^2 = 180$ oe or M1 for $(2k)^2 + ([-]k)^2$ oe

	Question	Answer	Marks	Partial Marks
	7(a)	2	2	M1 for $2x + 1 = 1 + 4$
Page 8 of	7(b)	$\frac{x-1}{2}$ of final answer	2	M1 for $y - 1 = 2x$ or $\frac{y}{2} = x + \frac{1}{2}$ or $x = 2y + 1$
12	7(c)	$4x^2 + 4x + 5$ final answer	3	M1 for $(2x + 1)^2 + 4$ and B1 for $[(2x + 1)^2 =]4x^2 + 2x + 2x + 1$ or better
	7(d)	$\sqrt{2}$ or 1.41 or 1.414	1	
	7(e)	-1	1	

For examination from 2020

© UC	Question	Answer	Marks	Partial Marks
UCLES 2017	8(a)	70.5 and 289.5	4	B3 for one correct value or 2 correct values not rounded to 1 decimal place
				or M2 for $\cos^{-1}(\frac{1}{3})$
				or M1 for $\cos x = \frac{1}{3}$
				If 0 scored SC1 for two solutions which sum to 360°
	8(b)	<i>y</i> ↑	2	B1 for correct shape but inaccurate amplitude or period
		1 0.5		
Pa				
Page 9 of 12		-0.5 -0.5		
		+		

For examination from 2020

//:sd			
Xtrei	© UC	Question	
nepape.rs	© UCLES 2017	9(a)	45.[0] or 45.01 to 45.02
		9(b)	84.9 or 84.90 to 84.91
		9(c)	4060 or 4063 to 4064 r

© UC	Question	Answer	Marks	Partial Marks
UCLES 2017	9(a)	45.[0] or 45.01 to 45.02 nfww	4	M2 for $55^2 + 70^2 - 2 \times 55 \times 70 \cos 40$ or M1 for correct implicit equation A1 for 2026.[]
	9(b)	84.9 or 84.90 to 84.91	4	B1 for angle $BDC = 40$ soi M2 for $\frac{70 \sin(their 40)}{\sin 32}$ or M1 for correct implicit equation
	9(c)	4060 or 4063 to 4064 nfww	3	M2 for $\frac{1}{2}(55 \times 70 \sin 40)$ + $\frac{1}{2}(70 \times their (b) \sin(180 - their 40 - 32))$ oe or M1 for correct method for one of the triangle areas
Page 10 of 12	9(d)	35.4 or 35.35 nfww	2	M1 for $\sin 40 = \frac{\text{distance}}{55}$ or better or for $= \frac{1}{2}(55 \times 70 \sin 40) = (70 \times \text{distance}) \div 2$ or better

© UC	Question	Answer	Marks	Partial Marks
© UCLES 2017	10(a)	14137 to 14137.2 or 14139	2	M1 for $\frac{4}{3} \times \pi \times 15^3$
7	10(b)(i)	104000 or 103600 to 103700	3	M2 for $\pi \times 25^2 \times 60 - 14140$ or M1 for $\pi \times 25^2 \times 60$ FT $\pi \times 37500 = 117809$ allow <i>their</i> answer as long as it rounds to 14140
	10(b)(ii)	52.8 or 52.75 to 52.81	2	M1 for <i>their</i> (b)(i) \div ($\pi \times 25^2$) or 14140 \div ($\pi \times 25^2$) FT $\pi \times 25^2 = 1963$ (allow use of <i>their</i> answer as long as it rounds to 14140) or 7.198 to 7.201
	10(c)	$\sqrt{(5x)^2 + (12x)^2}$	M1	
Pa		[slant height =] 13x	A1	
Page 11 of 12		$\pi(5x)^2 \text{ or } \pi(5x)(13x)$	M1	Accept $25\pi x^2$
of 12		$\pi(5x)^2 + \pi(5x)(13x) = 4\pi r^2$	M1	
		$r^2 = \frac{90\pi}{4\pi}x^2 = \frac{45}{2}x^2$	A1	With all steps shown and no errors seen

Question	Answer	Marks	Partial Marks
11(a)	(0, 16) (4, -16)	6	M1 for $3x^2$ or $12x$ A1 correct $3x^2 - 12x$ B1 setting <i>their</i> $dy/dx = 0$ M1 for factorising <i>their</i> dy/dx A1 $x = 0$ and $x = 4$ A1 (0, 16) and (4, -16)
11(b)	(0, 16) maximum with correct reason $(4, -16)$ minimum with correct reason	3	B2 for both correct with no/one reason or B1 for one correct (with no reasons) or M1 correct attempt to find e.g. second derivative or gradients

0580/04

© UCLES 2017

Cambridge IGCSE – Mark Scheme SPECIMEN

BLANK PAGE